- Four-channel 200 MS/s waveform generator - Sine and Square waves generated to 100MHz - 16 Bit amplitude resolution - 1M waveform memory, 2M/4M waveform memory, optional - 10 Separate sequences link and loop segments in userdefinable order - Four separate SYNC outputs for independent channel synchronization - 10 Vpp into 50Ω, double into open circuit - Multiple run modes including trigger, re-trigger and trigger delay - (n)PSK and (n)QAM modulation - High resolution 3.8" LCD, color display - Ethernet 10/100, USB 2.0 and GPIB interfaces - Multi-Instrument synchronization - ArbConnection software for easy waveform creation&control The Model 2074, is a four-channel universal waveform synthesizer. It is built in a small case size to save space and cost but without compromising bandwidth and signal integrity. The instrument outputs either standard or user-defined waveforms in the range of 700 μHz to 80 MHz. 16-bit DAC's are used for building waveforms with excellent accuracy and resolution which are suitable for the finest test signals that are needed for today's sensitive instruments. Using the latest technology, you can be assured that the features and capabilities of the Model 2074 will be useful for many years. #### **Signal Integrity** As technology is evolving and new devices are developed every day, faster signals are needed to simulate and stimulate these new devices. The 2074 provides the highest bandwidth in its class and hence providing accurate duplication and simulation of test signals. With its wide range of sample clock generator (up to 200 MS/s), 16-bit vertical resolution and wide output bandwidth (over 100 MHz), one can create mathematical profiles, download the coordinates to the instrument and re-generate waveforms without compromising their fidelity and compatibility to the original design. #### **Four Synchronized Channels** The 2074 has four output channels of which are all synchronized to the same reference clock and share the same sample clock. This is not a limitation because the output frequency is a function of the number of points which are used for creating the waveform shape. On the other hand, the advantage of having four synchronized channels is huge in applications that require accurate and controlled phase between channels. Many applications require XY drive so two channels is just what is needed however, for three phase power simulation and four channel MEMS micro engine actuators, the Model 2074 is the most suitable product to use. #### **High Speed Function Generator** Care to use the instrument as a function generator? No need to fuss with loading complex waveform coordinates because the 2074 does the work for you. Select the standard waveforms tab and start generating any one from the ten waveforms that are pre-computed and available for immediate use. Included are: sine, triangle, square, pulse, ramp, sinc and others. Remember, however, that waveforms are created from sampling waveform points and therefore some of the waveforms cannot be generated above certain frequencies where the number of points are insufficient to draw a perfect shape. Regardless, using some trick, the 2074 will generate standard sine and square waveforms up to 80 MHz. #### Stable and Accurate Output Signals As standard, the instrument is equipped with a frequency reference that has 1ppm accuracy and stability over a period of 1 year. An external frequency reference is provided on the rear panel for applications requiring greater accuracy and stability. # 200MS/s Four-Channel Arbitrary Waveform / Function Generator Model WW2074 **Waveform Memory and Memory Segmentation** Waveform memory is the internal "black board" where the waveforms are created and reside. Large memory bank provides for longer waveforms. One can use the entire memory for a single waveform or split the length to smaller segments. In this case, many waveforms can be stored in the same memory and replayed, one-at-a-time, when recalled to the output. The memory segmentation is combined with a sequence generator that can take different memory segments and link (and loop) them in any order as required for the test. The ability to loop waveform segments in a sequence saves a lot of memory space and hence, extends the capability of the generator to produce complex and much longer waveforms, which would otherwise require large banks of memory. The 2074 has four sequence generators that can be designed to generate unique sequences for each of its output channels. #### Easy to use Large and user-friendly 3.8" back-lit color LCD display facilitates browsing though menus, updating parameters and displaying detailed and critical information for your waveform output. Combined with numeric keypad, cursor position control and a dial, the front panel controls simplifies the often complex operation of an arbitrary waveform generator. #### **Remote Control** Access speed is an increasingly important requirement for test systems. Included with the instrument is a variety of interfaces: Ethernet, USB and GPIB so one may select the most suitable interface for the application. Remote control of instrument functions, parameters and waveform download is easily tailored to specific system environment regardless if it is just a laptop to instrument or full-featured ATE system. IVI drivers and factory support will speed up system integration and hence minimize time-to-market as well as significantly reduce system development costs. #### **Remote Calibration** Normal calibration cycles in the industry range from one to three years where instruments are sent to a service center, opened to allow access to trimmers, calibrated and certified for repeated usage. Leading-edge technology was implemented to allow calibration from any interface, USB, GPIB or LAN. Calibration factors are stored in a flash memory thus eliminating the need to open instrument covers. #### **Multiple Environments to Write Your Code** Model 2074 comes with a complete set of drivers, allowing you to write your application in various environments such as: Labview, CVI, C++, VB, MATLAB. You may also link the supplied dll to other Windows based API's or, use low level SCPI commands (Standard Commands for Programmable Instruments) to program the instrument, regardless if your application is written for Windows, Linux or Macintosh operating systems. #### **MODULAR** Tabor's MODULAR software package supplies wireless design and manufacturing engineers with virtually all their test stimulus needs at baseband or IF/RF levels, whether required signals are analog or digital. With none of the limitations of traditional generators, Tabor's Wonder Wave Series allow any signal, simple or composed, clean or noisy, ideal or impaired, to be downloaded and played back. #### **ArbConnection** The ArbConnection software provides you with full control of instrument functions, modes and features. ArbConnection is a powerful editorial tool that allows you to easily design any type of waveform. Whether it is the built in wave, pulse or Serial data composers, or the built in equation editor with which you can create your own exotic functions, with ArbConnection virtually any application is possible. #### Multi-Instrument Synchronization Multiple 2074s can be synchronized using a Master-Slave arrangement allowing users to benefit from the same high quality performance in their multi-channels system. # 200MS/s Four-Channel Arbitrary Waveform / Function Generator # **Model WW2074** #### Service and Support Beyond providing precision Test & Measurement instruments, Tabor Electronics provides unparalleled service and support, and is continuously finding new ways to bring added value to its customers. Our after-sales services are comprehensive. They include all types of repair and calibration, and a single point of contact that you can turn to whenever you need assistance. As part of our extensive support, we offer individualized, personal attention Help Desk, both online and offline, via e-mail, phone or fax. Tabor Electronics maintains a complete repair and calibration lab as well as a standards laboratory in Israel and USA. Service is also available at regional authorized repair/calibration facilities. Contact Tabor Electronics for the address of service facilities nearest you. #### **Applications** For expert technical assistance with your specific needs and objectives, contact your local sales representative or our in-house applications engineers. Manuals, Drivers, and Software Support Every instrument comes equipped with a dedicated manual, developer libraries, IVI drivers, and software. However, if your specific manual is lost or outdated, Tabor Electronics makes it possible to log-on to its Download Center and get the latest data "in a click". #### **Product Demonstrations** If your application requires that you evaluate an instrument before you purchase it, a hands-on demonstration can be arranged by contacting your local Tabor Electronics representative or the Sales Department at our Corporate Headquarters. #### **Five-year Warranty** Every instrument from the Wonder Wave series comes with a five-year warranty. Each one has full test results, calibration certificate, and CD containing product's manual and complete software package. Our obligation under this warranty is to repair or replace any instrument or part thereof which, within five years after shipment, proves defective upon examination. To exercise this warranty, write or call your local Tabor representative, or contact Tabor Headquarters and you will be given prompt assistance and shipping instructions. # **Specification** 200MS/s Four-Channel Arbitrary Waveform / **Function Generator** # **Model WW2074** #### CONFIGURATION Output Channels 4, semi-independent #### INTER-CHANNEL CONTROL #### LEADING EDGE OFFSET Description: Channel 1 used as start reference channel 2, 3 and 4 can be offset by > a programmable number of points. Channels 3&4 must have the same duration in one of the following run modes: Triggered, Burst, or gated. Jitter Between Channels: 0 ps Offset Range: 0 to $\pm 1M$ points (2M/4M option), each CH, in reference to CH 1 Resolution and Accuracy: 1 point, channel 1/2; 4 points, channels 3/4 Initial Skew: ±(1 SCLK +1 ns) between channels; 1 ns between channels 3 and 4. #### INTER-CHANNEL DEPENDENCY Separate controls: Output on/off, amplitude, offset, standard waveforms, user waveforms, user waveform size. sequence table Common Controls: Sample clock (Arb), frequency (Std), reference source, trigger modes, trigger advance source, SYNC output, Modulation #### STANDARD WAVEFORMS Waveforms: Sine, Triangle, Square, Pulse, Ramp, Sinc (Sine(x)/x), Gaussian, Exponential, Repetitive Noise, DC, Half-Cycle, Frequency Range: Waveform dependent Source: Internal synthesizer Frequency Range: 700µHz to 80MHz Start Phase Range: 0-360° **Start Phase** 0.01° Resolution: **Harmonics Distortion:** | | ≤ 3Vpp | <5Vpp | <10Vpp | |-------------|--------|--------|--------| | DC to 1MHz | -55dBc | -48dBc | -37dBc | | 1 to 10MHz | -50dBc | -43dBc | -35dBc | | 10 to 50MHz | -35dBc | -30dBc | -28dBc | | 50 to 80MHz | -28dBc | -25dBc | -23dBc | #### Non-Harmonic Distortion: DC to 50MHz -65dBc 50 to 80MHz -60dBc #### **Total Harmonic Distortion:** DC to 20MHz #### Flatness (1kHz): DC to 1MHz 1% 1MHz to 10MHz 3% 10MHz to 25MHz 5% 25MHz to 80MHz 10% 80MHz to 100MHz 15% #### Phase Noise - Internal SCLK 100Hz Offset -70dBc/Hz 1kHz Offset -85dBc/Hz 10kHz Offset -92dBc/Hz 100kHz Offset -112dBc/Hz 1MHz Offset -140dBc/Hz #### **TRIANGLE** Frequency Range: 700µHz to 25MHz Start Phase Range: 0-360° Start Phase Resolution: 0.01° #### **SQUARE** Frequency Range: 700µHz to 80MHz Duty Cycle Range: 0% to 99.9% Rise/Fall Time: <4ns Aberration: <5%+10mV **PULSE** Frequency Range: 700µHz to 25MHz Delay, Rise/Fall Time, High Time Ranges: 0%-99.9% of period (each independently <4ns Rise/Fall Time: Aberration: <5%+10mV **RAMP** Frequency Range: 700µHz to 25MHz Delay, Rise/Fall Time Ranges: 0%-99.9% of period (each independently) SINC (Sine(x)/x) Frequency Range: 700µHz to 25MHz "0 Crossings": 4-100 **GAUSSIAN** Frequency Range: 700µHz to 25MHz Time Constant: 10-200 **EXPONENTIAL PULSE** Frequency Range: 700µHz to 25MHz Time Constant: -100 to 100 REPETITIVE NOISE Bandwidth: 80MHz DC -5V to 5V Range: HALF-CYCLE WAVEFORMS Function Shape: Sine, Triangle, Square Frequency Range: 0.01Hz to 1MHz **Phase Start Range** (Sine/triangle only): 0 to 360° Phase Resolution: 0.01° Duty Cycle Range: 0% to 99.9% Continuous, Triggered Run Modes: **Delay Between Half Cycles** (Continuous only): 200ns to 20s Delay Resolution 20ns #### **ARBITRARY WAVEFORMS** Sample Rate: 1.5S/s to 200MS/s (typically 250MS/s) Vertical Resolution: 16 bits Waveform Memory: 1M points (2M or 4M optional) #### **MEMORY SEGMENTATION** No. of Seaments: Min. Segment Size: 16 points Resolution: 4 points size increments from 16 to 1M points (2M or 4M optional) #### **SEQUENCED WAVEFORMS** Operation: Segments may be linked and repeated in a user-selectable order to generate extremely long waveforms. Segments are advanced using either a command or a trigger #### **ADVANCE MODES** **Automatic Sequence** Advance: No trigger required to step from one segment to the next. Sequence is repeated continuously per a preprogrammed sequence table. Stepped Sequence Advance: Current segment is sampled continuously until a trigger advances the sequence to the next programmed segment and sample clock rate. Single Sequence Advance: Current segment is sampled the specified number of repetitions and then idles at the end of the segment. Next trigger samples the next segment the specified repeat count, and so on. # Specification 200MS/s Four-Channel Arbitrary Waveform / Function Generator ## **Model WW2074** Mixed Sequence Advance: Each step of a sequence can be programmed to advance either a) automatically (Automatic Sequence Advance), or b) with a trigger (Stepped Sequence Advance). Sequencer Steps: 1 to 4096 Segment Loops: 1 to 1M Min. Seg. Duration: 600ns Multi Sequence: 1 to 10, Selectable #### **DIGITAL PULSE GENERATOR** Channel Dependency: All 4 channels share pulse parameters except level, polarity, delay and state Pulse State: On/Off Pulse Mode: Single or double, programmable Polarity: Normal, inverted or complemented Period: 80 ns minimum, programmed with 4 ns increments 4 ns minimum, 1e3 Sec max. **Rise/Fall Time:** <4ns High Time: Delay: O ns minimum, 1e3 Sec max. O ns minimum, 1e3 Sec max. Double Pulse Delay: O ns minimum, 1e3 Sec max. Amplitude Window: 10mVp-p to 10Vp-p Low Level -5V to +4.990V High Level -4.990V to +5V #### NOTES: Pulse Width: - All pulse parameters, except rise and fall times, may be freely programmed within the selected pulse period provided that the ratio between the period and the smallest incremental unit does not exceed the ratio of 1,000,000 to 1. With the 2M/4M option, the ratio is extended to 2,000,000 (4,000,000) to 1, hence the specifications below do not show maximum limit as each must be computed from the above relationship. - 2. Rise and fall times, may be freely programmed provided that the ratio between the rise/fall time and the smallest incremental unit does not exceed the ratio of 100,000 to 1. - The sum of all pulse parameters must not exceed the pulse period setting #### **COMMON CHARACTERISTICS** #### **FREQUENCY** Resolution: Front Panel 11 digits (limited by 1µHz) Remote 14 digits (limited by 1µHz) **Accuracy & Stability:** Same as reference 10MHz REFERENCE CLOCK Internal 0.0001% (1 ppm TCXO) initial tolerance over a 19°C to 29°C temperature range; 1ppm/°C below 19°C and above 29°C; 1ppm/year aging rate External 10MHz TTL, 50% ±2% duty cycle **AMPLITUDE** **Range:** 10mV to 10Vp-p into 50Ω; Double into open circuit **Resolution:** 4 digits Accuracy (1kHz): 10mV to 99mVp-p ± 10mV to 99mVp-p ±(1% + 5mV) 100mV to 999mVp-p ±(1% + 10mV) 1V to 10Vp-p ±(1% + 70mV) **OFFSET** **Range:** 0 to ± 4.995 V, into 50Ω Resolution: 1mV **Accuracy:** $\pm (1\% + 1\% \text{ of Amplitude } +5\text{mV})$ **FILTERS** Type: 25MHz Bessel 50MHz Bessel 60MHz Elliptic 120MHz Elliptic #### **OUTPUTS** **MAIN OUTPUTS** **Connectors:** Front panel BNC, each channel $50\Omega \pm 1\%$ **Protection:** Short Circuit to Case Ground, 10s max Standby: Output On or Off (Output Disconnected) SYNC OUTPUTS Connectors: Rear panel BNC, separate for each channel. Level: **Sync Type:** Pulse with Arbitrary and Standard Waves; LCOM in Sequence and Burst Modes **SAMPLE CLOCK OUTPUT** Connector:Rear panel SMBLevel:400mVp-pImpedance:50Ω **COUPLE OUTPUT** **Connector:** Rear panel SMB Level: LVPECL **Impedance:** 50Ω , terminated to +1.3V INPUTS TRIGGER INPUT **Connector:** Rear panel BNC Impedance: $10k\Omega$ Slope: Positive or Negative (selectable) Programmable Level: ±5V Sensitivity: 200mV Damage Level: ±12V Pulse Width: >10ns minimum **EXTERNAL REFERENCE INPUT** **Connector:** Rear panel SMB 10MHz Impedance&Level: Default $10k\Omega \pm 5\%$, TTL, $50\% \pm 2\%$ duty cycle Option $50\Omega \pm 5\%$, 0dBm Sinewave (with internal jumper) SAMPLE CLOCK INPUT **Connector:** Rear panel SMB 100mVp-p to 1Vp-p Impedance: $50k\Omega$ Minimum Pulse Width: 4 ns **COUPLE INPUT** Connector: Rear panel SMB Input Level: LVPECL **Impedance:** 50Ω , terminated to +1.3V Minimum Pulse Width: 4 ns **MODULATION** Carrier Waveform: Sinewave Modulation Source: Internal Run Modes: Off (Outputs CW), Continuous, Triggered, Delayed Trigger, Burst, Re-trgger and Gated Advance Source: Front panel button, Software commands, Rear panel TRIG IN (n)PSK and (n)QAM **Carrier Waveform:** Sine wave **Carrier Frequency:** 1Hz to 75MHz Carrier Control: On/Off Modulation Type: PSK, BPSK, QPSK, OQPSK, PI/4 DQPSK, 8PSK, 16PSK, 16QAM, 64QAM, 256QAM and User Defined **Symbol Rate Range:** 1S/s to 1MS/s Carrier Control: On/Off Symbol Period Accuracy: ±(500ns + Carrier Period) **Table Size:** 2 to 4096 #### **WIRELESS SIGNAL GENERATION** #### **EVM (Error Vector Magnitude)** | | 0.1 MS/s | 1 MS/s | 5 MS/s | |--------|-----------|-----------|-----------| | 10 MHz | 0.15% (1) | 0.30% (1) | 1.40% (1) | | 80 MHz | 0.25% (2) | 0.50% (2) | 1.20% (2) | Test conditions: Sample Clock Frequency = as specified Sample Clock = External Modulation = QPSK Baseband Filter = Raised Cosine Alfa = 0.35 # **Specification** 200MS/s Four-Channel Arbitrary Waveform / **Function Generator** ## **Model WW2074** #### **ACLR (Adjacent Channel Leakage Power Ratio)** | | 0.1 MS/s | 1 MS/s | 5 MS/s | |--------|----------------------|----------------------|----------------------| | 10 MHz | 73 dB ⁽¹⁾ | 73 dB ⁽¹⁾ | 65 dB ⁽¹⁾ | | 80 MHz | 64 dB ⁽²⁾ | 64 dB ⁽²⁾ | 60 dB ⁽²⁾ | #### Test conditions: Sample Clock Frequency = as specified Sample Clock = External BW = Symbol Rate; Offset = 1.35 x Symbol Rate (1) Sample Clock Frequency = 100 MS/s (2) Sample Clock Frequency = 200 MS/s #### TRIGGER CHARACTERISTICS #### **RUN MODES** **Burst:** Continuous: Free-run output of a waveform. Triggered: Upon trigger, outputs one waveform cycle. Last cycle always completed. Gated: External signal transition enables or disables generator output. Last cycle always completed Upon trigger, outputs a Dual or multiple pre-programmed number of waveform cycles from 1 through 1M. Mixed: First output cycle is initiated by a software trigger. Consequent output requires external triggers through the rear panel TRIG IN #### TRIGGER SOURCE #### **EXTERNAL** Source: Rear panel BNC **Trigger Level:** ±5V Resolution: 1mV Input Frequency: DC to 2.5MHz Min. Pulse Width: >10ns Slope: Positive/Negative transitions, selectable Trigger Jitter: ±1 sample clock period **DELAYS** (Trigger input to waveform output) System Delay: 6 sample clock cycles+150ns **Trigger Delay:** [(0; 200ns to 20s) + system delay] Trigger Resolution: 20ns Trigger Delay Error: 6 sample clock cycles+150ns #### **INTERNAL / RETRIGGER (BUS)** Range: 200ns to 20s Resolution: 20ns 3 sample clock cycles+20ns Error: #### MANUAL Soft trigger command through Source: the front panel or external interface #### FREQUENCY COUNTER / TIMER Measurements: Frequency, Period, Avaraged Period. Pulse Width and Totalize Source: Trigger Input 10Hz to 100MHz (typically 120MHz) Range: Sensitivity: 500mVpp Accurcay: mag1 Slope: Positive/Negative transitions **Gate Time:** 100µSec to 1 Sec Input Range: Trigger Modes: Continious, Hold and Gated **Period Avaraged** 10ns to 50ms Range Resolution 7 digits / Sec Period and Pulse Width 500ns to 50ms Range Resolution 100ns Totalize 10¹²-1 Range Overflow Led indication #### **MULTI-INSTRUMENT SYNCHRONIZATION** Description: Multiple instruments can be daisy-chained together and synchronized to provide multichannel synchronization. <25 ns + 1 sample clock cycle, Initial Skew: depending on cable length and quality, typically with 1m cables Waveform Types: Standard, Arbitrary and Sequenced using the automatic sequence advance mode only **Run Modes:** Continuous, Triggered, Gated and Counted Burst #### **LEADING EDGE OFFSET** **Description:** Leading edge offset is programmable for master and slave units. Continuous run mode only Run Mode: Offset Range: 200 ns to 20 s Resolution&Accuracy: 20 ns #### **GENERAL** Power Supply: 85 to 265Vac, 48-63 Hz Power Consumption: 60W Front Panel Display: Color LCD, 3.8" reflective. 320 x 240 pixels, back-lit Operating temperature: 0°C - 50°C Humidity (non-condensing): 11°C - 30°C 31°C - 40°C 75% 41°C - 50°C 45% Storage temperature: -40°C to + 70°C. Ethernet 10/100, USB 2.0 Interface: and GPIB standard IEEE-488.2 - SCPI - 1993.0 Language: **Dimensions:** 212 x 88 x 415 mm (WxHxD) Weight: Approximately 7 lb Safety: EN61010-1, 2nd revision EMC: CE marked. Designed to meet VDE 0411/03.81 and UL 1244 Reliability: MTBF per MIL-HDBK-217E, 25°C, Ground Benign Workmanship Standards: Conform to IPC-A-610D Supplied Accessories: Power Cord, USB cable, CD containing Operating Manual, ArbConnection software and developer libraries. Warranty: 5 years standard #### **ORDERING INFORMATION** MODEL WW2074 200MS/s Four-Channel ArbitraryWaveform Generator #### **OPTIONS** Option 1: 2 M Memory Option 2: 4 M Memory **ACCESSORIES** S-Rack mount: 19" Single Rack Mounting Kit 19" Dual Rack Mounting Kit **D-Rack mount:** Case Kit: Professional Carrying Bag Note: Options and Accessories must be specified at the time of your purchase.