250MS/s Single-Channel Arbitrary Waveform / Function Generator MODEL WW2571A WONDERWAVE SERIES

- Single-channel 250 MS/s waveform generator
- Sine and Square waves generated to 100MHz
- 16 Bit amplitude resolution
- 1M waveform memory, 2M/4M waveform memory, optional
- 16 Vpp into 50Ω , double into open circuit
- Multiple run modes including trigger, re-trigger and trigger delay
- AM, FM, Arbitrary FM, FSK, ASK, PSK, Frequency Hop and sweep modulation
- Powerful sequence generator links and loops segments in user-defined fashion. Stores up to 10 different sequence tables
- 16 Bit LVDS parallel output
- High resolution 3.8" LCD, color display
- Ethernet 10/100, USB 2.0 and GPIB interfaces
- Multi-Instrument synchronization
- ArbConnection software for easy waveform creation&control

Model 2571A, is a single-channel frequency agile waveform synthesizer that combines industry leading performance, frequency agility and modulation capability in a stand-alone, bench-type product. Signal source in the range of 1Hz to 250MHz and 16-bit vertical DAC resolution provide the test stimuli required for the decades to come. It can be used as an arbitrary waveform generator, modulating generator, as well as function and pulse generator.

250MS/s Performance

Higher performance test equipment and systems are needed as products which use increasing signal bandwidths are developed. The sample rate generator can be programmed from frequencies as low as 1Hz to 250MS/s with superior waveform quality and purity. For example, phase noise is typically below 120dB/Hz at 10kHz offset for a 10MHz sine wave.

High Speed Function Generator

Interested in standard functions? There are 10 built-in functions that cover most routine requirements. These are sine, triangle, square, pulse, ramp, sinc, Gaussian, exponential, noise, as well as DC. Sine and square waves can be generated from frequencies as low as 700µHz to frequencies as high as 100MHz. All functions and their respective parameters are accessible via the front panel.

Waveform Memory

Longer waveform memory minimizes test duration by allowing multiple waveforms to be loaded simultaneously and retrieved as needed for the specific test. It comes with 1M points of memory as standard. Optional 2M or 4M memory is available for applications requiring longer memory.

Digital Outputs

16-bits are available as digital patterns from a rear-panel VHDC connector. Output level is LVDS which is efficient and sufficient for high speed digital data transmissions.

Digital patterns are built the same way as arbitrary waveforms; thus the immense power of the waveform generator with all its functions and features is harnessed behind this output turning the 2571A into the most powerful pattern generator in its class.

Frequency Agility

Decrypting radio transmission often employs frequency hopping. The 2571A provides breakthrough technology that allows simulation of 12-bit decrypted code as easy as writing a simple hop table. The frequency hop mode is fast, coherent and provides a great tool for simulating code transmission without loosing speed and integrity.

Memory Segmentation and Sequencing

Solving almost every complex application, powerful segmentation and sequencing produce an endless variety of complex waveforms. The waveform memory can be divided into multiple waveform segments and sequenced in user-selectable fashion to create complex waveforms that have repeatable segments and thus saving precious memory space. Five different advance modes are available for the 2571A series to step through the sequence table, including stepped and mixed advance modes and thus increasing efficiency of the test system. To solve even the toughest application, the products allow generation of up to 100 different sequences, each capable of linking 16k waveform fragments and looping each waveform up to 1M times.

Accurate Output

As standard, the instrument is equipped with an internal frequency reference that has 1ppm accuracy and stability over a period of 1 year. An external frequency reference is provided on the rear panel for applications requiring greater accuracy or stability, supported by the instrument's 14 digits resolution.

Modulation Capability

Agility and modulation capabilities open the door to diverse applications. In addition to the capability of generating any shape and style of waveform with the arbitrary waveform generation power, the products can also do standard modulation schemes such as FM, AM, FSK, PSK, and frequency hops without sacrificing the power of the instrument control and output run modes.

Automated External Self-Calibration

Normal calibration cycles in the industry range from one to three years where instruments are sent to a service center, opened to allow access to trimmers, calibrated and certified for repeated usage. Leading-edge technology was implemented to allow calibration from any interface, USB, GPIB or LAN. Calibration factors are stored in a flash memory thus eliminating the need to open instrument covers.

Easy to use

Large and user-friendly 3.8" back-lit color LCD display facilitates browsing though menus, updating parameters and displaying detailed and critical information for your waveform output. Combined with numeric keypad, cursor position control and a dial, the front panel controls simplifies the often complex operation of an arbitrary waveform generator.

High Speed Access

Access speed is an increasingly important requirement for test systems. Included with the instrument is a variety of interfaces: Ethernet 10/100, USB 2.0 and GPIB so one may select the interface most compatible to individual requirements. Using any of the external interfaces, controlling instrument functions and features as well as downloading waveforms and sequences is fast, time saving and easily tailored to every system regardless if it is just a laptop to instrument or full-featured ATE system. IVI drivers and factory support will speed up system integration thus minimizing time-to-market and reduce system development costs significantly.

Multiple Environments to Write Your Code

Model 2571A comes with a complete set of drivers, allowing you to write your application in various environments such as: Labview, CVI, C++, VB, MATLAB. You may also link the supplied dll to other Windows based API's or, use low level SCPI commands (Standard Commands for Programmable Instruments) to program the instrument, regardless if your application is written for Windows, Linux or Macintosh operating systems.

MODULAR

Tabor's MODULAR software package supplies wireless design and manufacturing engineers with virtually all their test stimulus needs at baseband or IF/RF levels, whether required signals are analog or digital. With none of the limitations of traditional generators, Tabor's Wonder Wave Series allow any signal, simple or composed, clean or noisy, ideal or impaired, to be downloaded and played back.

ArbConnection

The ArbConnection software provides you with full control of instrument functions, modes and features. ArbConnection is a powerful editorial tool that allows you to easily design any type of waveform. Whether it is the built in wave, pulse or Serial data composers, or the built in equation editor with which you can create your own exotic functions, with ArbConnection virtually any application is possible.

Multi-Instrument Synchronization

Multiple 2571As can be synchronized using a Master-Slave arrangement allowing users to benefit from the same high quality performance in their multi-channels needs.

250MS/s Single-Channel Arbitrary Waveform / Function Generator

Model WW2571A

Service and Support

Beyond providing precision Test & Measurement instruments, Tabor Electronics provides unparalleled service and support, and is continuously finding new ways to bring added value to its customers.

Our after-sales services are comprehensive. They include all types of repair and calibration, and a single point of contact that you can turn to whenever you need assistance. As part of our extensive support, we offer individualized, personal attention Help Desk, both online and offline, via e-mail, phone or fax.

Tabor Electronics maintains a complete repair and calibration lab as well as a standards laboratory in Israel and USA. Service is also available at regional authorized repair/calibration facilities.

Contact Tabor Electronics for the address of service facilities nearest you.

Applications

For expert technical assistance with your specific needs and objectives, contact your local sales representative or our in-house applications engineers.

Manuals, Drivers, and Software Support Every instrument comes equipped with a dedicated manual, developer libraries, IVI drivers, and software. However, if your specific manual is lost or outdated, Tabor Electronics makes it possible to log-on to its Download Center and get the latest data "in a click".

Product Demonstrations

If your application requires that you evaluate an instrument before you purchase it, a hands-on demonstration can be arranged by contacting your local Tabor Electronics representative or the Sales Department at our Corporate Headquarters.

Five-year Warranty

Every instrument from the Wonder Wave series comes with a five-year warranty. Each one has full test results, calibration certificate, and CD containing product's manual and complete software package. Our obligation under this warranty is to repair or replace any instrument or part thereof which, within five years after shipment, proves defective upon examination. To exercise this warranty, write or call your local Tabor representative, or contact Tabor Headquarters and you will be given prompt assistance and shipping instructions.

Specification 250MS/s Single-Channel Arbitrary Waveform / **Function Generator**

Model WW2571A

STANDARD WAVEFORMS

Sine, Triangle, Square, Pulse, Waveforms: Ramp, Sinc (Sine(x)/x),

Gaussian, Exponential, Repetitive Noise, DC, Half-Cycle.

Frequency Range: Waveform dependent Source: Internal synthesizer

SINE

Frequency Range: 700µHz to 100MHz

Start Phase Range: 0-360°

Start Phase

Resolution: 0.01°

Harmonics Distortion:

		≤ 3vpp	≤ovpp	$\leq 10 \text{ Vpp}$
DC	to 1MHz	-55dBc	-48dBc	-37dBc
1 to	10MHz	-50dBc	-43dBc	-35dBc
101	to 50MHz	-35dBc	-30dBc	-28dBc
50 t	to 100MHz	-28dBc	-25dBc	-23dBc

Non-Harmonic Distortion:

DC to 50MHz -65dBc 50 to 100MHz -60dBc

Total Harmonic Distortion:

DC to 20MHz

Flatness (1kHz):

DC to 1MHz 1MHz to 10MHz 10MHz to 25MHz 5% 25MHz to 80MHz 10% 80MHz to 100MHz 15%

Phase Noise - Internal SCLK

100Hz Offset -70dBc/Hz 1kHz Offset -85dBc/Hz 10kHz Offset -92dBc/Hz 100kHz Offset -112dBc/Hz 1MHz Offset -140dBc/Hz

TRIANGLE

Frequency Range: 700µHz to 32MHz

Start Phase Range: 0-360°

Start Phase

Resolution:

SQUARE

Frequency Range: 700µHz to 100MHz Duty Cycle Range: 0% to 99.9%

Rise/Fall Time:

DC to 10Vpp 10Vpp to 16Vpp <5ns

Aberration:

<5%+10mV DC to 10Vpp 10Vpp to 16Vpp < 7%

PULSE

Frequency Range: 700µHz to 32MHz

Delay, Rise/Fall Time,

High Time Ranges: 0%-99.9% of period (each

independently

Rise/Fall Time:

DC to 10Vpp <4ns 10Vpp to 16Vpp <5ns

Aberration:

DC to 10Vpp <5%+10mV 10Vpp to 16Vpp <7%

Frequency Range: 700µHz to 32MHz

Delay, Rise/Fall

Time Ranges: 0%-99.9% of period (each

independently)

SINC (Sine(x)/x)

Frequency Range: 700µHz to 32MHz

"0 Crossings": 4-100

GAUSSIAN

Frequency Range: 700µHz to 32MHz

Time Constant: 10-200

EXPONENTIAL PULSE

Frequency Range: 700µHz to 32MHz Time Constant: -100 to 100

REPETITIVE NOISE

Bandwidth: 50MHz

DC

Range: -8V to 8V

HALF-CYCLE WAVEFORMS

Function Shape: Sine, Triangle, Square Frequency Range: 0.01Hz to 1MHz

Phase Resolution: 0.01°

Duty Cycle Range: 0% to 99.9% Run Modes: Continuous, Triggered

Delay Between Half Cycles

(Continuous only): 200ns to 20s

Delay Resolution 20ns

ARBITRARY WAVEFORMS

Sample Rate:

Continuous Mode 1.5S/s to 250MS/s (typically 300MS/s) All Other Modes 1.5S/s to 225MS/s (typically 250MS/s)

Vertical Resolution: 16 bits

Waveform Memory: 1M points (2M or 4M optional)

MEMORY SEGMENTATION

No. of Segments: Min. Segment Size: 16 points

4 points size increments from Resolution:

16 to 1M points (2M/4M optional)

SEQUENCED WAVEFORMS

Operation:

Segments may be linked and repeated in a user-selectable order to generate extremely long waveforms. Segments are advanced using either a command or a trigger

ADVANCE MODES

Automatic Sequence

Advance:

No trigger required to step from one segment to the next. Sequence is repeated continuously per a pre-

programmed sequence table.

Stepped Sequence

Advance:

Current segment is sampled continuously until a trigger advances the sequence to the next programmed segment and sample

clock rate.

Single Sequence

Advance:

Current seament is sampled the specified number of repetitions and then idles at the end of the

seament.

Next trigger samples the next segment the specified repeat

count, and so on.

Mixed Sequence

Advance:

Each step of a sequence can be programmed to advance either a) automatically (Automatic Sequence Advance), or b) with a trigger (Stepped Sequence Advance).

Sequencer Steps: 1 to 4096 Segment Loops: 1 to 1M Minimum Segment

Duration: 600ns

Multi Sequence: 1 to 10, Selectable

DIGITAL PULSE GENERATOR

Channel Dependency: Both channels share pulse

parameters except level, polarity, delay and state

Pulse State: On/Off

Pulse Mode: Polarity:

Single or double, programmable Normal, inverted or complemented Period: 80 ns minimum, programmed

with 4 ns increments

Specification 250MS/s Single-Channel Arbitrary Waveform / Function Generator

Model WW2571A

Pulse Width: 4 ns minimum, 1e3 Sec max. **Rise/Fall Time:**

DC to 10Vpp <4ns 10Vpp to 16Vpp <5ns

High Time:

Delay:

0 ns minimum, 1e3 Sec max.

0 ns minimum, 1e3 Sec max.

Double Pulse Delay:

16mVp-p to 16Vp-p

Low Level
High Level

-8V to +7.990V

-7.990V to +8V

NOTES:

- All pulse parameters, except rise and fall times, may be freely programmed within the selected pulse period provided that the ratio between the period and the smallest incremental unit does not exceed the ratio of 1,000,000 to 1. With the 2M/4M option, the ratio is extended to 2,000,000 (4,000,000) to 1, hence the specifications below do not show maximum limit as each must be computed from the above relationship.
- Rise and fall times, may be freely programmed provided that the ratio between the rise/fall time and the smallest incremental unit does not exceed the ratio of 100,000 to 1.
- 3. The sum of all pulse parameters must not exceed the pulse period setting

DIGITAL PATTERN OUTPUT

Pattern Width: 16-bits, differential LVDS

Output Level: Pattern Length:

Dedicated Memory 1 to 128k

Arbitrary Memory 16 to 1M (2M or 4M optional) **Update Frequency:** 100µpps to 250Mpps

COMMON CHARACTERISTICS

FREQUENCY

Resolution:

Front Panel 11 digits (limited by 1µHz) Remote 14 digits (limited by 1µHz) **Accuracy & Stability:** Same as reference

10MHz REFERENCE CLOCK

Internal 0.0001% (1 ppm TCXO) initial

tolerance over a 19°C to 29°C temperature range; 1ppm/°C below 19°C and above 29°C; 1ppm/year aging rate

External 10MHz TTL, 50% ±2% duty cycle or 50Ω ±5% 0dBm

AMPLITUDE

Range: 16mV to 16Vp-p into 50Ω ;

Double into open circuit

Impedance Display: Programmable from 50Ω to $1M\Omega$ Resolution: 4 digits

Accuracy (1kHz):

16mV to 159.9mVp-p ±(1% + 5mV) 160mV to 1.599Vp-p ±(1% + 10mV) 1.6V to 11.99Vp-p ±(1% + 70mV) 12V to 16Vp-p ±2%

OFFSET

Range: 0 to ± 7.992 V. into 50Ω

Resolution: 1mV

Accuracy: $\pm (1\%+1\% \text{ of Amplitude } +5\text{mV})$

FILTERS

Type: 25MHz Bessel 50MHz Bessel 60MHz Elliptic

60MHz Elliptic 120MHz Elliptic

OUTPUTS

MAIN OUTPUT

Connector: Front panel BNC Impedance: $50\Omega \pm 1\%$

Protection: Short Circuit to Case Ground,

10s max

Standby: Output On or Off (Output

Disconnected)

SYNC OUTPUT

Position:

Connector: Front panel BNC

Level: □

Sync Type: Pulse with Arbitrary and Standard Waves; LCOM in

Sequence and Burst Modes (including Burst Modulation); Marker with Modulation Mode only, programmable position 0 to 1M (2M or 4M optional)

Resolution: 4 points

DIGITAL PATTERN OUTPUTS

Connector: Rear panel SCSI-2, 68-pin VHDC **Pattern Width:** 16 bit differential outputs

Source: Channel 1 only Level: IVDS

SAMPLE CLOCK OUTPUT

COUPLE OUTPUT

Connector: Rear panel SMB LVPECL

Impedance: 50Ω , terminated to +1.3V

INPUTS

TRIGGER INPUT

Connector: Rear panel BNC

Impedance: $10k\Omega$

Slope: Positive or Negative (selectable)

Programmable Level: ±5V Sensitivity: 100mV Damage Level: ±12V

Pulse Width: >10ns minimum

EXTERNAL REFERENCE INPUT

Connector: Rear panel SMB 10MHz

Frequency: 1 Impedance&Level:

Default 10k Ω ±5%, TTL, 50% ±2% Option 50 Ω ±5%, 0dBm Sinewave

SAMPLE CLOCK INPUT

Connector: Rear panel SMB 100mVp-p to 1Vp-p

Impedance: $50k\Omega$

Min. Pulse Width: 4 ns

COUPLE INPUT

Connector: Rear panel SMB LVPECL

Impedance: 50 Ω , terminated to +1.3V

Min. Pulse Width: 4 ns

MODULATION

Carrier Waveform: Sinewave **Modulation Source:** Internal

Run Modes: Off (Outputs CW), Continuous,

Triggered, Delayed Trigger, Burst, Re-trager and Gated

Advance Source: Front panel button, Software

commands, Rear panel TRIG IN

Carrier Idle Mode: On or Off, programmable Marker Position: TTL, Programmable at selectable frequency

FΜ

Carrier Waveform: Sine wave **Carrier Frequency:** 10Hz to 100MHz

Modulating Waveforms: Sine, square, triangle, ramp

Modulating Frequency: 10mHz to 100kHz **Peak Deviation:** Up to 50MHz

Specification 250MS/s Single-Channel Arbitrary Waveform / **Function Generator**

Model WW2571A

ARBITRARY FM

Carrier Waveform: Sine wave Carrier Frequency: 10Hz to 100MHz Modulating Waveform: Arbitrary waveform

Modulating Waveform

Sample Clock: 1S/s to 2.5MS/s Frequency Array Size: 4 to 10,000 frequencies

Carrier Waveform: Sine wave Carrier Frequency: 10Hz to 100MHz Envelop Waveform: Sine, square, triangle, ramp Envelop Frequency: 10mHz to 100kHz Modulation Depth: 0% to 100%

FSK

Carrier Waveform: Sine wave Carrier Frequency: 10Hz to 100MHz Baud Rate Range: 1bits/sec to 10Mbits/sec FSK Data Bits Length: 2 to 4,000

Carrier Waveform: Sine wave Carrier Frequency: 10Hz to 100MHz 0 to 360° Carrier phase:

Baud Rate Range: 1bits/sec to 10Mbits/sec

FSK Data Bits Length: 2 to 4,000

FREQUENCY HOPPING

Carrier Waveform: Sine wave Carrier Frequency: 10Hz to 100MHz Hop Table Size: 2 to 1.000

Dwell Time Mode: Fixed or Programmable for

each step

Dwell Time: 200 ns to 20 s

Dwell Time Resolution: 20 ns

Carrier Waveform: Sine wave

Carrier Frequency: 10Hz to 100MHz **Start/Shift Amplitude:** 16mVpp to 16Vpp into 50Ω

Resolution: Maximum amplitude/4096 Baud Rate Range: 1Bits/s to 10MBits/s

ASK Data Bits Length: 2 to 4,000

AMPLITUDE HOPPING

Carrier Waveform: Sine wave Carrier Frequency: 10Hz to 100MHz

16mVpp to 16Vpp into 50Ω , Range: Dwell Time Mode: Fixed or Programmable for

> each step 200 ns to 21 s

Dwell Time: Dwell Time Resolution: 20 ns

Resolution: Maximum amplitude/4096

ARBITRARY 3D

Carrier Waveform: Sine wave Carrier Frequency: 10Hz to 100MHz Modulating Waveform: Arbitrary waveform Modulating Type: Amplitude CH1, Amplitude CH2, Frequency and Phase

Modulating Waveform

Sample Clock: 1S/s to 2.5MS/s Memory Size: 4 to 30,000

SWEEP

Carrier Waveform: Sine wave Sweep Step: Linear or log Sweep Direction: Up or Down Sweep Range: 10Hz to 100MHz Sweep Time: 1.4s to 40s

WIRELESS SIGNAL GENERATION

EVM (Error Vector Magnitude)

	0.1 MS/s	1 MS/s	5 MS/s
10 MHz	0.15% (1)	0.30% (1)	1.40% ⁽¹⁾
80 MHz	0.25% (2)	0.50% (2)	1.20% ⁽²⁾

Test conditions:

Sample Clock Frequency = as specified

Sample Clock = External Modulation = QPSK

Baseband Filter = Raised Cosine

Alfa = 0.35

ACLR (Adjacent Channel Leakage Power Ratio)

	0.1 MS/s	1 MS/s	5 MS/s
10 MHz	73 dB ⁽¹⁾	73 dB ⁽¹⁾	65 dB ⁽¹⁾
80 MHz	64 dB ⁽²⁾	64 dB ⁽²⁾	60 dB ⁽²⁾

Test conditions:

Sample Clock Frequency = as specified

Sample Clock = External BW = Symbol Rate; Offset = 1.35 x Symbol Rate

(1) Sample Clock Frequency = 100 MS/s (2) Sample Clock Frequency = 200 MS/s

TRIGGER CHARACTERISTICS

RUN MODES

Gated:

Continuous: Free-run output of a waveform. Triggered: Upon trigger, outputs one

waveform cycle. Last cycle always completed.

External signal transition enables or disables generator output.

Last cycle always completed

Upon trigger, outputs a Dual **Burst:**

or multiple pre-programmed number of waveform cycles

from 1 through 1M.

First output cycle is initiated by Mixed:

a software trigger. Consequent output requires external triggers through the rear panel TRIG IN

TRIGGER SOURCE

EXTERNAL

Source: Rear panel BNC

Trigger Level: ±5V Resolution: 1mV

DC to 2.5MHz Input Frequency:

Min. Pulse Width: >10ns

Slope: Positive/Negative transitions, selectable

Trigger Jitter: ±1 sample clock period

DELAYS (Trigger input to waveform output)

System Delay: 6 sample clock cycles+150ns Trigger Delay: [(0; 200ns to 20s) + system delay]

Trigger Resolution: 20ns

Trigger Delay Error: 6 sample clock cycles+150ns

INTERNAL / RETRIGGER (BUS)

Range: 200ns to 20s Resolution:

Error: 3 sample clock cycles+20ns

MANUAL

Source:

Source: Soft trigger command through

the front panel or external

interface

FREQUENCY COUNTER / TIMER

Frequency, Period, Avaraged Measurements: Period, Pulse Width and Totalize

Trigger Input

10Hz to 100MHz (typically 120MHz) Range:

Sensitivity: 500mVpp Accurcay: 1ppm

Slope:

Positive/Negative transitions Gate Time:

100µSec to 1 Sec

±5V Input Range:

Trigger Modes: Continious, Hold and Gated

Period Avaraged

10ns to 50ms Range Resolution 7 digits / Sec

Period and Pulse Width

Range 500ns to 50ms

Resolution 100ns

Totalize

Range 10¹²-1 Overflow Led indication

Specification 250MS/s Single-Channel Arbitrary Waveform / **Function Generator**

Model WW2571A

MULTI-INSTRUMENT SYNCHRONIZATION

Description: Multiple instruments can be daisy-chained together and

> synchronized to provide multichannel synchronization.

<25 ns + 1 sample clock cycle, Initial Skew: depending on cable length and

quality, typically with 1m cables Waveform Types: Standard, Arbitrary and Sequenced

using the automatic sequence

advance mode only Run Modes: Continuous, Triggered, Gated

and Counted Burst **LEADING EDGE OFFSET**

Description: Leading edge offset is programmable for master and slave units.

Run Mode: Continuous run mode only Offset Range: 200 ns to 20 s

Resolution&Accuracy: 20 ns

GENERAL

85 to 265Vac, 48-63 Hz **Power Supply:**

Power Consumption: 60W

Front Panel Display: Color LCD, 3.8" reflective, 320 x 240 pixels, back-lit

Operating temperature: 0°C - 50°C

Humidity

(non-condensing): 11°C - 30°C 31°C - 40°C 75% 45%

41°C - 50°C

Storage temperature: -40°C to + 70°C.

Ethernet 10/100, USB 2.0 Interface: and GPIB standard

IEEE-488.2 - SCPI - 1993.0 Language: Dimensions: 212 x 88 x 415 mm (WxHxD)

Weight: Approximately 7 lb Safety: EN61010-1, 2nd revision EMC: CE marked. Designed to meet VDE 0411/03.81 and UL 1244

Reliability: MTBF per MIL-HDBK-217E, 25°C, Ground Benign

Workmanship Std: Conform to IPC-A-610D Supplied Accessories: Power Cord, USB cable, CD

containing Operating Manual, ArbConnection software and

developer libraries. Warranty: 5 years standard

ORDERING INFORMATION

MODEL	WW2571A			
250MS/s Single-Channel Arbitrary Waveform Generato				
OPTIONS				
Option 1: Option 2:	2 M Memory 4 M Memory			
ACCESSORIES				
S-Rack mount: D-Rack mount: Case Kit:	19" Single Rack Mounting Kit 19" Dual Rack Mounting Kit Professional Carrying Bag			

Note: Options and Accessories must be specified at the time of your purchase.